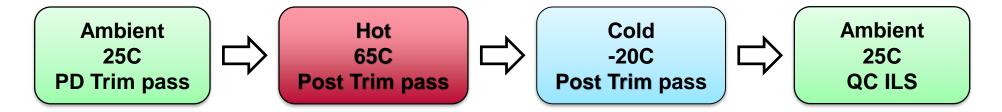


# **ADXL362 Ambient Pass Elimination**



# **Change Summary:**


| Product | Overview                                                                                         | Test Flow Change                                                                                                                                 | Date |
|---------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ADXL362 | <ul> <li>Ultralow power / Low noise</li> <li>3-axis digital output MEMS accelerometer</li> </ul> | <ul> <li>First Test Pass Elimination –<br/>Ambient 25C Trim Pass.</li> <li>Transfer trim sequence from<br/>Ambient (25C) to Hot (65C)</li> </ul> |      |



## **Proposed Test Flow Changes for ADXL362:**

## **Change: Elimination of First Test Pass – Ambient (25C)**

Current ADXL362 Test Flow:



Proposed ADXL362 Test Flow:





## **Supporting Data and Verification Outline**

- Fuse Blow Profiling
  - Compare fuse trimming signal between those performed in ambient tests and hot tests
- ► Fuse Characterization
  - Sweep through combinations of supply and timing to check effect on trimming quality
- Sensitivity Trim Verification
  - Compare QC readings from ATE with bench readings to assess the sensitivity of the hot trim
- Parametric Comparison
  - Migrate ambient tests to hot set-up and assess parameters that are at risk for transfer
- Yield Validation
  - This is to verify the yield difference between the old and the new test flow



## **Fuse Blow Profiling**

► Through this experiment ADI has ensured that the fuse blow trim sequence is unaffected with the change of temperature.

Fuse blow profiles for both temperatures are comparable.



#### **Fuse Blow Characterization**

► This experiment detects the sensitivity of the trimming test with varying voltage and timings.

| Supply | Period | Yield | Issues on fuse<br>blow | Contact issue |
|--------|--------|-------|------------------------|---------------|
| 4.2V   | 250ns  | 36/40 | 0                      | 4             |
| 4.2V   | 300ns  | 39/40 | 0                      | 1             |
| 4.2V   | 350ns  | 37/40 | 0                      | 3             |
| 4.3V   | 250ns  | 37/40 | 0                      | 3             |
| 4.3V   | 300ns  | 37/40 | 0                      | 3             |
| 4.3V   | 350ns  | 37/40 | 0                      | 3             |
| 4.4V   | 250ns  | 37/40 | 0                      | 3             |
| 4.4V   | 300ns  | 36/40 | 0                      | 4             |
| 4.4V   | 350ns  | 36/40 | 3                      | 4             |
|        |        |       |                        |               |

| Voltages        | and     | timing |
|-----------------|---------|--------|
| periods w       | ere co  | mbined |
| around the      | 25C p   | rocess |
| parameters      | s (4.2) | V and  |
| 300 <i>ns</i> ) |         |        |

| Voltage Timings |        |  |  |  |
|-----------------|--------|--|--|--|
| 4.2 V           | 250 ns |  |  |  |
| 4.3 V           | 300 ns |  |  |  |
| 4.4 V           | 350 ns |  |  |  |

- □ Results show that the 4.4*V* & 350*ns* combination shows signs of failure.
- The ambient combination was therefore used for the hot trim parameters.



## **Sensitivity Trim Validation**

This experiment validates the trim settings chosen by comparing the readings between those detected at ATE and those detected at bench for 25C and 65C trim parameters

- Three different test lots from three different fab lots were tested using the new test flow.
  - The X, Y, and Z sensitivity parameters were compared
- The delta in readings between 25C ATE and bench and 65C and bench were compared
- Data was in good agreement



# **Parametric CPK Comparison:**

|                                           | New Hot PD Trim |          |          | Old Amb PD Trim |        |        | Difference           |
|-------------------------------------------|-----------------|----------|----------|-----------------|--------|--------|----------------------|
| ADXL362 Parameters                        | Cpl             | Cpu      | Cpk      | Cpl             | Cpu    | Cpk    | Amb CPK -<br>Hot CPK |
| Supply Current measure mode ultra low     | 3.649728        | 2.763241 | 2.763241 | 3.357           | 2.612  | 2.612  | -0.15                |
| Supply Current vdd wake-up mode ultra low | 3.400257        | 2.59008  | 2.59008  | 2.563           | 4.093  | 2.563  | -0.03                |
| Supply Current vdd standby mode           | 2.693523        | 12.66088 | 2.693523 | 6.29            | 162.58 | 6.29   | 3.60                 |
| Resonant Frequency                        | 7.204           | 4.58     | 4.58     | 3.63            | 3.315  | 3.315  | -1.27                |
| Offset x-axis 2gee                        | 2.097321        | 2.644493 | 2.097321 | 0.628           | 1.081  | 0.628  | -1.47                |
| Offset y-axis 2gee                        | 2.116656        | 2.558046 | 2.116656 | 1.715           | 2.285  | 1.715  | -0.40                |
| Offset z-axis 2gee                        | 2.626407        | 3.770863 | 2.626407 | 2.861           | 4.104  | 2.861  | 0.23                 |
| Selftest delta x-axis 2gee                | 4.765582        | 5.692732 | 4.765582 | 5.277           | 7.075  | 5.277  | 0.51                 |
| Selftest delta y-axis 2gee                | 6.834223        | 6.135721 | 6.135721 | 7.595           | 5.761  | 5.761  | -0.37                |
| Selftest delta z-axis 2gee                | 8.221445        | 17.98992 | 8.221445 | 10.382          | 19.434 | 10.382 | 2.16                 |
| Internal clk frequency                    | 0.867161        | 1.388963 | 0.867161 | 0.934           | 1.289  | 0.934  | 0.07                 |
| Gain X-channel 2gee                       | 5.478753        | 8.009942 | 5.478753 | 5.203           | 8.764  | 5.203  | -0.28                |
| Gain Y-channel 2gee                       | 6.654694        | 6.965406 | 6.654694 | 6.232           | 7.474  | 6.232  | -0.42                |
| Gain Z-channel 2gee                       | 4.95458         | 8.759688 | 4.95458  | 3.525           | 8.644  | 3.525  | -1.43                |
| X sensitivity 2gee range                  | 2.011429        | 2.192583 | 2.011429 | 2.359           | 2.702  | 2.359  | 0.35                 |
| Y sensitivity 2gee range                  | 2.382133        | 2.620653 | 2.382133 | 2.529           | 2.859  | 2.529  | 0.15                 |
| Z sensitivity 2gee range                  | 2.813254        | 2.778564 | 2.778564 | 3.155           | 1.642  | 1.642  | -1.14                |



#### **Yield Validation**

► 3 test lots were used to compare the test yields, per test pass, of the old versus new flow.

► No issues were found



## **Summary:**

- ► ADI has demonstrated parametric trim at 65C, thus elimination the need for the 25C test pass
- This change do not reduce the parts test coverage and will not reduce in any reduction in quality or change to form, fit or function

